Relocalization of the V-ATPase B2 subunit to the apical membrane of epididymal clear cells of mice deficient in the B1 subunit.

نویسندگان

  • Nicolas Da Silva
  • Winnie W C Shum
  • Jaafar El-Annan
  • Teodor G Păunescu
  • Mary McKee
  • Peter J S Smith
  • Dennis Brown
  • Sylvie Breton
چکیده

An acidic luminal pH in the epididymis contributes to maintaining sperm quiescent during their maturation and storage. The vacuolar H(+)ATPase (V-ATPase), located in narrow and clear cells, is a major contributor to luminal acidification. Mutations in one of the V-ATPase subunits, ATP6v1B1 (B1), cause distal renal tubular acidosis in humans but surprisingly, B1(-/-) mice do not develop metabolic acidosis and are fertile. While B1 is located in the apical membrane of narrow and clear cells, the B2 subunit localizes to subapical vesicles in wild-type mouse, rat and human epididymis. However, a marked increase (84%) in the mean pixel intensity of B2 staining was observed in the apical pole of clear cells by conventional immunofluorescence, and relocalization into their apical membrane was detected by confocal microscopy in B1(-/-) mice compared with B1(+/+). Immunogold electron microscopy showed abundant B2 in the apical microvilli of clear cells in B1(-/-) mice. B2 mRNA expression, determined by real time RT-PCR using laser-microdissected epithelial cells, was identical in both groups. Semiquantitative Western blots from whole epididymis and cauda epididymidis showed no variation of B2 expression. Finally, the luminal pH of the cauda epididymidis was the same in B1(-/-) mice as in B1(+/+) (pH 6.7). These data indicate that whereas overall expression of B2 is not affected in B1(-/-) mice, significant redistribution of B2-containing complexes occurs from intracellular compartments into the apical membrane of clear cells in B1(-/-) mice. This relocation compensates for the absence of functional B1 and maintains the luminal pH in an acidic range that is compatible with fertility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compensatory membrane expression of the V-ATPase B2 subunit isoform in renal medullary intercalated cells of B1-deficient mice.

Mice deficient in the ATP6V1B1 ("B1") subunit of the vacuolar proton-pumping ATPase (V-ATPase) maintain body acid-base homeostasis under normal conditions, but not when exposed to an acid load. Here, compensatory mechanisms involving the alternate ATP6V1B2 ("B2") isoform were examined to explain the persistence of baseline pH regulation in these animals. By immunocytochemistry, the mean pixel i...

متن کامل

Altered V-ATPase expression in renal intercalated cells isolated from B1 subunit-deficient mice by fluorescence-activated cell sorting.

Unlike human patients with mutations in the 56-kDa B1 subunit isoform of the vacuolar proton-pumping ATPase (V-ATPase), B1-deficient mice (Atp6v1b1(-/-)) do not develop metabolic acidosis under baseline conditions. This is due to the insertion of V-ATPases containing the alternative B2 subunit isoform into the apical membrane of renal medullary collecting duct intercalated cells (ICs). We previ...

متن کامل

Expression of the 56-kDa B2 subunit isoform of the vacuolar H(+)-ATPase in proton-secreting cells of the kidney and epididymis.

B1 and B2 are two highly homologous isoforms of the vacuolar H(+)-ATPase (V-ATPase) 56-kDa B subunit. We investigated whether the B2 subunit is expressed alongside B1 in proton-secreting cells of the rodent kidney collecting duct (intercalated cells, IC) and epididymis (clear cells) by using antibodies against distinct COOH-terminal peptides from the two B isoforms. B2 was detected not only in ...

متن کامل

AMP-activated protein kinase inhibits alkaline pH- and PKA-induced apical vacuolar H+-ATPase accumulation in epididymal clear cells.

Acidic luminal pH and low [HCO(3)(-)] maintain sperm quiescent during maturation in the epididymis. The vacuolar H(+)-ATPase (V-ATPase) in clear cells is a major contributor to epididymal luminal acidification. We have shown previously that protein kinase A (PKA), acting downstream of soluble adenylyl cyclase stimulation by alkaline luminal pH or HCO(3)(-), induces V-ATPase apical membrane accu...

متن کامل

The B1-subunit of the H(+) ATPase is required for maximal urinary acidification.

The multisubunit vacuolar-type H(+)ATPases mediate acidification of various intracellular organelles and in some tissues mediate H(+) secretion across the plasma membrane. Mutations in the B1-subunit of the apical H(+)ATPase that secretes protons in the distal nephron cause distal renal tubular acidosis in humans, a condition characterized by metabolic acidosis with an inappropriately alkaline ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 293 1  شماره 

صفحات  -

تاریخ انتشار 2007